Newton

November 2018/1
1.1 Twee kragte, F_{1} en F_{2}, werk op 'n punt in. Indien F_{1} en F_{2} in dieselfde rigting werk, het die maksimum resultant 'n grootte van 13 N . Indien kragte F_{1} en F_{2} in teenoorgestelde rigtings werk, is die grootte van die minimum resultant 3 N . Die grootte van die twee kragte, in newton, is ...

A 8 en 5 .
B $\quad 16$ en 10.
C 3 en 10 .
D $\quad 10$ en 7 .
1.2 'n Vrybewegende blok gly teen 'n skuinsvlak af teen 'n KONSTANTE SNELHEID. Dit beteken dat die ...

A wrywingskrag wat op die blok inwerk, nul is.
B netto krag wat op die blok inwerk in die rigting afwaarts teen die helling van die vlak is.

C netto krag wat op die blok inwerk, nul is.
D komponent van gewig parallel aan die vlak, groter as die wrywingskrag is.
1.3 ' n Trollie word met n krag van 150 N teen n hoek van 45° met die horisontaal, oor ' n horisontale oppervlak gestoot. Die trollie ondervind ' n konstante wrywingskrag van 60 N .

Die NETTO KRAG wat op die trollie inwerk:
(i) Veroorsaak dat die trollie horisontaal versnel
(ii) Is aan die toegepaste krag gelyk
(iii) Is horisontaal vorentoe

Watter van die stellings hierbo is KORREK?
A (i) en (ii)
B (ii) en (iii)
C (i) en (iii)
D (i), (ii) en (iii)

Newton

November 2018/2
1.4 ' n Man in ' n hysbak beweeg opwaarts teen ' n KONSTANTE SPOED. Die gewig van die man is W. Volgens Newton se Derde Wet is die reaksiekrag van die gewig W die krag van die ...

A vloer op die man.
B Aarde op die man.
C man op die vloer.
D man op die Aarde.

VRAAG 2 (Begin op 'n nuwe bladsy.)
Twee kragte, met groottes van 50 N en 80 N , werk op in punt op 'n Cartesiese vlak in, in die rigtings wat in die skets hieronder getoon word.

2.1 Gee die korrekte term vir die volgende beskrywing:
'n Enkele vektor wat dieselfde effek as twee of meer vektore saam het
2.2 Bereken die:
2.2.1 Grootte van die vertikale komponent van die 50 N
2.2.2 Grootte van die resultante (netto) krag
2.2.3 Rigting van die resultante (netto) krag

Newton

November 2018/3

VRAAG 3 (Begin op 'n nuwe bladsy.)

'n Houer, met ' n massa van 45 kg , word met 'n krag van 90 N teen ' n hoek van 50° met die horisontaal getrek. Die houer beweeg teen 'n KONSTANTE SNELHEID.

3.1 Definieer die term kinetiese wrywingskrag.
3.2 Stel Newton se Eerste Bewegingswet in woorde.
3.3 Bereken die grootte van die horisontale komponent van die toegepaste krag.
3.4 Bereken die grootte van die normaalkrag.
3.5 Bereken die koëffisiënt van kinetiese wrywing.
3.6 Sal die koëffisiënt van kinetiese wrywing verander indien die hoek van die toegepaste krag verklein word? Skryf slegs JA of NEE en gee ' n rede.

Newton

November 2018/4

VRAAG 4 (Begin op 'n nuwe bladsy.)

Leerders ondersoek die verhouding tussen die massa van 'n voorwerp en die versnelling wat dit ondervind wanneer 'n konstante netto krag op die voorwerp toegepas word. Hulle gebruik hulle resultate om die grafiek hieronder te teken.

4.1 Stel Newton se Tweede Bewegingswet in woorde.
4.2 Bereken die helling van die grafiek.
4.3 Bepaal vervolgens die netto krag wat gedurende die eksperiment op die voorwerp toegepas is.
4.4 Skryf 'n gevolgtrekking vir hierdie eksperiment neer.

Newton

November 2018/5

VRAAG 5 (Begin op ' n nuwe bladsy.)
' n Krat, met ' n massa van 25 kg , gly teen ' n vak af wat ' n helling van 15° met die horisontaal het. Tydens die eerste gedeelte van die beweging, van A na B, is daar geen wrywing tussen die krat en die vlak nie, maar gedeelte BC het ' n ruwe oppervlak.

5.1 Teken ' n vrye kragtediagram van AL die kragte wat op die krat inwerk terwyl dit van B na C beweeg.
5.2 Bereken die grootte van die versnelling van die krat terwyl dit van A na B beweeg.
5.3 Skryf die rigting van die versnelling van die krat neer terwyl dit van B na C stadiger beweeg. Skryf slegs TEEN DIE HELLING OP of TEEN DIE HELLING AF.
5.4 Die groote van die netto versnelling van B na C is $1,2 \mathrm{~m} \cdot \mathrm{~s}^{-2}$. Bereken die grootte van die wrywingskrag wat op die krat inwerk.

VRAAG 6 (Begin op ' n nuwe bladsy.)

Die gravitasiekrag op ' n tuig, met die naam Curiosity, op die oppervlak van Mars is 3338 N . Die radius van Mars is 3390 km en die massa van die planeet is $6,39 \times 10^{23} \mathrm{~kg}$.

6.1 Stel Newton se Universele Gravitasiewet in woorde.
6.2 Bereken die massa van die tuig.
6.3 Bereken die gewig van die tuig op die Aarde.

Newton

November 2017/1
1.1 Watter EEN van die volgende pare fisiese hoeveelhede is vektorhoeveelhede?

A Krag en afstand
B Snelheid en spoed
C Lading en elektriese veld
D Elektriese veld en krag
1.2 Watter EEN van die volgende vektordiagramme stel drie kragte voor wat tegelyk op ' n voorwerp inwerk terwyl die voorwerp teen KONSTANTE SNELHEID beweeg?
A

B

C

D

Newton

November 2017/2
1.3 ' n Blok met ' n massa van 4 kg word al langs ' n wrywinglose helling, teen ' n hoek van θ, met ' n krag F , opwaarts getrek, soos in die skets hieronder getoon.

Watter EEN van die volgende vergelykings kan gebruik word om die grootte van die normaalkrag (N) te bereken?

A $\quad \mathrm{N}=(4)(9,8) \sin \theta$
B $\quad \mathrm{N}=\mathrm{F}-(4)(9,8) \cos \theta$
C $\quad \mathrm{N}=\mathrm{F}+(4)(9,8) \cos \theta$
D $\quad \mathrm{N}=(4)(9,8) \cos \theta$
$1.4 \quad \mathrm{n}$ Satelliet wentel om die Aarde op ' n hoogte waar die gravitasiekrag ' n kwart $(1 / 4)$ van die krag is wat dit op die oppervlak van die Aarde ondervind. Indien die radius van die Aarde \mathbf{R} is, is die hoogte van die satelliet BO DIE OPPERVLAK van die Aarde ...

A $\quad 4 \mathrm{R}$
B $\quad 2 R$
C $\quad \mathbf{R}$
D $\quad 1 / 2 R$

Newton

November 2017/3

VRAAG 2 (Begin op 'n nuwe bladsy.)

Blok A, wat op ' n horisontale ruwe oppervlak in rus is, word as ' n anker gebruik om blok B, met 'n massa van 56 kg , op ' n sekere hoogte bo die grond in die lug te hou. Die twee blokke is verbind met tou \mathbf{R}, wat ' n hoek van 35° met die vertikaal maak. Blok \mathbf{B} hang vanaf die plafon aan kabel \mathbf{C}. Verwys na die diagram hieronder.

Blok A ondervind ' n wrywingskrag van grootte 200 N . Die stelsel is in rus.
2.1 Definieer die term resulterende vektor.
2.2 Wat is die grootte van die resulterende krag wat op blok \mathbf{B} inwerk?
2.3 Teken 'n benoemde vrye kragtediagram wat al die kragte aandui wat op blok B inwerk.
2.4 Bepaal die horisontale komponent van die krag in tou \mathbf{R}.
2.5 Bereken die vertikale komponent van die krag in kabel C.
2.6 Bereken die hoek θ tussen die kabel en die plafon.

Newton

November 2017/4

VRAAG 3 (Begin op ' n nuwe bladsy.)

Leerders ondersoek die verwantskap tussen netto krag en versnelling deur 'n trollie oor ' n oppervlak te trek wat ' n effense helling het om vir wrywing te kompenseer. Die trollie is aan verskillende massas met ' n toutjie van weglaatbare massa verbind. Die toutjie beweeg oor 'n wrywinglose katrol. Verwys na die diagram hieronder.

Tydtikkerlint wat aan die trollie verbind is, beweeg deur die tydtikker. Die versnelling van die trollie word bepaal deur die tydtikkerlint te analiseer. Die resultate van die netto krag wat deur die verskillende massastukke geproduseer word en die versnelling van die trollie, is in die tabel hieronder aangeteken.

NETTO KRAG (N)	$\mathbf{a}\left(\mathbf{m} \cdot \mathbf{s}^{\mathbf{- 2}}\right)$
0,3	0,36
0,6	0,73
0,9	1,09
1,2	1,45

3.1 Skryf ' n hipotese vir hierdie eksperiment neer.
3.2.1 Identifiseer die onafhanklike veranderlike.
3.2.2 Identifiseer die gekontroleerde veranderlike.
3.3 Gebruik die grafiekpapier op die ANTWOORDBLAD en teken 'n grafiek van die versnelling teenoor netto krag.
3.4 Bereken die helling van die grafiek.
3.5 Gebruik die helling van die grafiek wat in VRAAG 3.4 bereken is om die massa van die trollie te bepaal.

Newton

November 2017/5

VRAAG 4 (Begin op 'n nuwe bladsy.)

' n Insleepvoertuig sleep ' n kar op ' n grondpad.
Die krag wat die enjin van die insleepvoertuig uitoefen, is 9000 N . Die massa van die insleepvoertuig is 1300 kg en die massa van die kar is 950 kg . Die voertuie word aan mekaar verbind met ' n onelastiese sleepstang van weglaatbare massa. Sien die diagram hieronder.

Die insleepvoertuig en kar beweeg teen ' n KONSTANTE SNELHEID.
4.1 Definieer die term wrywingskrag.
4.2 NOEM en STEL die wet wat verduidelik waarom die krag wat deur die insleepvoertuig op die kar uitgeoefen word, dieselfde is as die krag wat deur die kar op die insleepvoertuig uitgeoefen word.
4.3 Teken ' n benoemde vrye kragtediagram wat al die kragte wat op die insleepvoertuig inwerk, aandui.
4.4 Indien die kinetiese wrywingskoëffisiënt tussen die insleepvoertuigbande en die padoppervlak 0,45 is, bereken die:
4.4.1 Grootte van die spanning in die sleepstang
4.4.2 Kinetiese wrywingskoëffisiënt tussen die KAR se bande en die padoppervlak

Die sleepstang tussen die kar en die insleepvoertuig ontkoppel skielik en die kar kom los.
4.5 Gebruik ' n relevante bewegingswet en verduidelik waarom die kar vir ' n kort afstand aanhou vorentoe beweeg.
4.6 Bereken die versnelling van die kar soos dit na ' n kort afstand tot stilstand kom.

Newton

November 2017/6

VRAAG 5 (Begin op 'n nuwe bladsy.)

Die versnelling as gevolg van gravitasie op planeet X is $2,7 \mathrm{~m} \cdot \mathrm{~s}^{-2}$. Die radius van hierdie planeet is 'n derde ($1 / 3$) van die radius van die Aarde.
5.1 Verduidelik die verskil tussen gewig en massa.
5.2 Bereken die massa van planeet X .
5.3 Bepaal die faktor waarmee die gewig van ' n voorwerp op planeet X van die gewig van dieselfde voorwerp op die Aarde sal verskil.

Newton

November 2016/1
1.1 'n Seun gooi'n tennisbal vertikaal opwaarts in die lug. By die maksimum hoogte is die bal se...

A potensiële energie 'n maksimum.
B potensiële energie ' n minimum.
C meganiese energie nul.

D kinetiese energie 'n maksimum.
1.2 ' n Leerder stoot' n blok met massa \mathbf{M} teen n konstante snelheid met' n stok oor ' n ruwe horisontale oppervlak met' n krag F wat 'n hoek van 30° met die horisontaal maak (FIGUUR 1). Die vrye-liggaam diagram hieronder toon al die kragte wat op die blok inwerk.

Watter EEN van die volgende dui die KORREKTE verwantskap tussen die grootte van die horisontale kragte in die vrye-liggaam diagram?

A $\quad F_{f}=F_{A}$
B $\quad F_{f}=F_{A} \sin 30^{\circ}$
C $\quad F_{f}=F_{A} \cos 30^{\circ}$
D $\quad F_{f}=F_{A} \cos 60^{\circ}$

Newton

November 2016/2
1.4 Die resultant van al die kragte wat inwerk op ' n voorwerp is nul indien die voorwerp ...

A versnel.
B vertraag.
C teen 'n konstante snelheid teen die helling afgly.
D om ' n sirkel teen ' n konstante snelheid beweeg.
1.5 Watter van die volgende waarnemings van alledaagse aktiwiteite verwys NIE na Newton se Derde Bewegingswet NIE?

A ' n Swemmer is in staat om vorentoe te beweeg in ' n swembad.

B 'n Vuurpyl sweef in die ruimte.
C 'n Vuurpyl word aangedryf die ruimte in.
D 'n Uil klap sy vlerke om aan te hou vlieg.
1.7 Twee kragte van groottes 11 N en 5 N onderskeidelik, werk gelyktydig op 'n voorwerp in. Watter EEN van die volgende KAN NIE die resultant van die twee kragte wees NIE?

A $\quad 5 \mathrm{~N}$
B $\quad 16 \mathrm{~N}$

C $\quad 6 \mathrm{~N}$

D $\quad 9 \mathrm{~N}$

Newton

November 2016/3

VRAAG 2 (Begin op 'n nuwe bladsy.)

Die diagram hieronder toon 'n tou en 'n katrolsisteem van 'n toestel wat gebruik word om ' $122,5 \mathrm{~kg}$ houer teen ' n konstante snelheid opwaarts te lig. Aanvaar dat die toue lig en onelasties is en dat die katrolle wrywingloos is.

2.1 Bereken die gewig van die houer.
2.2 Die houer beweeg opwaarts teen'n konstante snelheid soos aangetoon hierbo.
2.2.1 Teken'n vektordiagram van al die kragte wat op die houer inwerk en dui ook al die hoeke aan wat in die diagram voorkom.
2.2.2 Bepaal die groottes van die kragte $\mathbf{T}_{\mathbf{1}}$ en $\mathbf{T}_{\mathbf{2}}$.
2.3 Die houer beweeg opwaarts teen 'n konstante snelheid:
2.3.1 Wat sê hierdie stelling vir ons in verband met die kragte wat op die houer inwerk?
2.3.2 Watter EEN van Newton se wette ondersteun jou antwoord in VRAAG 2.3.1?

Newton

November 2016/4

VRAAG 3 (Begin op 'n nuwe bladsy)

'n Houer met 'n massa van 5 kg word langs ' n horisontale oppervlak gestoot oor ' n afstand van 4 m in 'n oostelike rigting na punt P deur 'n konstante krag van 25 N , soos getoon in die diagram hieronder. Die kinetiese wrywings-koëffisiënt tussen die houer en die oppervlakte is 0,40 .

3.1 Teken ' n kragte-diagram en toon AL die kragte wat op die 5 kg houer inwerk.
3.2 Skryf Newton se Tweede Bewegingswet neer in woorde.
3.3 Bereken die grootte van die:
3.3.1 Normaalkrag wat op die 5 kg houer inwerk
3.3.2 Wrywingskrag wat op die 5 kg houer inwerk
3.4 Toon met behulp van berekeninge dat die houer na regs versnel.

Newton

November 2016/5

VRAAG 4 (Begin op 'n nuwe bladsy.)

'n Voorwerp met'n massa van 3 kg hang aan 'n ligte, onelastiese tou oor 'n wrywinglose katrol. Die tou is aan 'n 5 kg houer vasgeheg. Die houer word oor 'n rowwe oppervlak getrek met'n krag, F_{A}, van 36 N en beweeg teen ' n konstante snelheid.

4.1 4.1.1 Teken'n vrye-liggaamdiagram van die kragte wat op die 3 kg voorwerp inwerk.
4.1.2 Bepaal die grootte van die spanningskrag op die 3 kg voorwerp.
4.2 Teken' n vrye-liggaamdiagram van AL die kragte wat op die 5 kg houer inwerk.
4.3 Wat is die grootte van die spanning, \mathbf{T}_{2} op die 5 kg houer?
4.4 Bereken die wrywingskrag tussen die oppervlak en die 5 kg houer.

VRAAG 5 (Begin op 'n nuwe bladsy.)

Halley se komeet, met' n beraamde massa van $1 \times 10^{15} \mathrm{~kg}$, was op sy naaste punt n afstand van $1,3 \times 10^{8} \mathrm{~km}$ vanaf die Aarde, met massa van $6 \times 10^{24} \mathrm{~kg}$, toe dit die laaste keer waargeneem is in 1986.
5.1 Stel Newton se Universele Gravitasiewet in woorde.
5.2 Is die grootte van die gravitasiekrag ondervind deur die komeet GELYK AAN, GROTER AS of KLEINER AS die gravitasiekrag ondervind deur die aarde?
5.3 Stel die fisika-wet wat van toepassing is op die antwoord in VRAAG 5.2 hierbo.
5.4 Sal die versnelling van die komeet TOENEEM, AFNEEM of DIESELFDE BLY soos dit nader aan die aarde beweeg? Verduidelik.
5.5 Bereken die grootte van die gravitasiekragte wat deur die aarde op Halley se komeet uitgeoefen word by die naaste punt vanaf die aarde.

Newton

November 2015/1

1.1 Watter van die volgende is waar vir die gegewe skets?

A $\quad \overrightarrow{F 1}+\overrightarrow{F 2}=\overrightarrow{F 3}$
B $\quad \overrightarrow{F 1}+\overrightarrow{F 3}=\overrightarrow{F 2}$
C $\quad \overrightarrow{F 3}+\overrightarrow{F 2}=\overrightarrow{F 1}$
D $\quad \overrightarrow{F 1}+\overrightarrow{F 2}+\overrightarrow{F 3}=0$
1.2 Twee kragte word op 'n blok soos in die diagram aangetoon, uitgeoefen. Die resultante krag in die horisontale rigting is:

A zero
B $\quad 10 \mathrm{~N}$ na regs
C $\quad 10 \mathrm{~N}$ na links
D $\quad 20 \mathrm{~N}$ na regs
1.3 Mary het 'n massa van 50 kg en staan op 'n skaal in 'n hyser. Die lesing op die skaal is 555 N . Die hyser ...

A versnel opwaarts.
B beweeg afwaarts teen 'n konstante snelheid.
C beweeg opwaarts teen ' n konstante snelheid.
D versnel afwaarts.
1.4 Watter een van die volgende is ' n voorbeeld van' n kontakkrag?

A Elektrostatiese krag
B Magnetiese krag
C Gravitasiekrag
D Wrywingskrag

Newton

November 2015/2

VRAAG 2 (Begin op ' n nuwe bladsy.)

Tydens ' n bergklimoefening hang Ferial, massa 50 kg , van 'n onrekbare nylontou wat aan punt X aan die vertikale krans vas is. Sy druk met haar bene teen die krans sodat dit 'n hoek van 45° met die vertikaal maak, soos in die figuur getoon. Die hoek wat die tou met die krans maak is 20°.

Punt Y is in ewewig.
2.1 Verduidelik wat bedoel word met Punt Y is in ewewig.
2.2 Teken' n KRAGTEDIAGRAM om al die kragte op punt Y aan te toon.
2.3 Bepaal deur middel van ' n AKKURATE KONSTRUKSIE en METING: (Gebruik'n skaal van 10 mm : 50 N en dui ten minste TWEE hoeke aan)
2.3.1 Die grootte van die krag wat die tou op haar uitoefen.
2.3.2 Die grootte van die krag wat haar bene uitoefen.

Newton

November 2015/3

VRAAG 3 (Begin op 'n nuwe bladsy.)

'n Houtkabinet van 60 kg rus op die agterkant van'n tip-trok. Die agterkant lig stadig op, totdat dit'n hoek van 30° met die horisontaal maak. Die kabinet beweeg NIE.

3.1 Bereken die grootte van die wrywingskrag.
3.2 Bereken die koëffisiënt van statiese wrywing.
3.3 Die hoek van 30° word nou vergroot. Hoe sal dit die volgende affekteer:
(Skryf slegs VERMEERDER, VERMINDER of BLY DIESELFDE)

3.3.1 Die koëffisiënt in VRAAG 3.2?

3.3.2 Die wrywingskrag? Verduidelik jou antwoord.

VRAAG 4 (Begin op 'n nuwe bladsy.)

' n 6 kg blok op ' n ruwe horisontale oppervlak word verbind aan' n 2 kg blok deur ' n ligte, onrekbare tou wat oor 'n wrywinglose katrol hang. Die wrywingskrag tussen die 6 kg blok en die tafel is $11,76 \mathrm{~N}$. 'n Afwaartse krag van 2 N word toegepas op die 2 kg blok soos in die diagram hieronder getoon.

4.1 Stel Newton se Tweede Bewegingswet in woorde.
4.2 Teken'n vryliggaamdiagram van AL die kragte wat op die 6 kg blok inwerk.
4.3 Bereken:
4.3.1 Die grootte van die versnelling van die 6 kg blok.
4.3.2 Die grootte van die spanning (T) in die tou wat die twee blokke verbind.
4.4 Die ruwe oppervlak word vervang met 'n gladde, wrywinglose oppervlak.

Hoe sal hierdie verandering jou antwoord in VRAAG 4.3.1 beïnvloed? Skryf slegs NEEM TOE, NEEM AF of BLY DIESELFDE.

Newton

November 2015/4

VRAAG 5 (Begin op 'n nuwe bladsy.)

' n Trok beweeg teen ' n konstante snelheid en word skielik van agter deur 'n vinnig bewegende bus getref. 'n Krat staan los agterop die trok en'n man, M, sit op die krat.

5.1 In watter rigting sal die man, M , val?

Skryf slegs AGTERTOE of VORENTOE.
5.2 Stel in woorde Newton se Bewegingswet wat jy gebruik het om VRAAG 5.1 te beantwoord.
5.3 Luxolo en Kay, met massas 80 kg en 50 kg onderskeidelik staan op rolskaatse en kyk na mekaar. Hulle is aanvanklik in rus. Hulle stoot teen mekaar en beweeg weg van mekaar, in verskillende rigtings. (IGNOREER WRYWING)

5.3.1 Hoe vergelyk die krag op Kay met die krag wat op Luxolo uitgeoefen word?

Skryf slegs GROTER, KLEINER of GELYK AAN.
5.3.2 Verduidelik hoe hulle versnellings vergelyk.

Newton

November 2015/5

VRAAG 6 (Begin op 'n nuwe bladsy.)

NASA vuur 'n ruimtetuig vanaf die grond in die ruimte in. Dit versnel vanuit rus na $160 \mathrm{~m} . \mathrm{s}^{-1}$ in die eerste 400 s van die reis. Die totale massa van die ruimtetuig en sy brandstoftenks is 2600 ton ($2,6 \times 10^{6} \mathrm{~kg}$). Die ruimtetuig se aandrywingsisteem bestaan uit uitlaatgasse wat by sy basis, B, uitgestoot word.

6.1 Noem 'n aksie-reaksie kragpaar wat op 'n ruimtevaarder inwerk soos die ruimtetuig opwaarts versnel.
6.2 Bereken die resultante krag op die ruimtetuig tydens die eerste 400 s van sy vlug.
6.3 Gee TWEE redes waarom die ruimtetuig se versnelling toeneem soos dit weg van die oppervlak van die aarde beweeg.

Newton

November 2015/6

VRAAG 7 (Begin op 'n nuwe bladsy.)

Die diagram toon die aarde (A) en die maan (M)'n afstand 'r' van mekaar. Die stippellyn toon die wentelbaan van die maan om die aarde. Die massa van die maan $\left(M_{M}\right)$ is $7,35 \times 10^{22} \mathrm{~kg}$ en die massa van die aarde $\left(M_{A}\right)$ is $6 \times 10^{24} \mathrm{~kg}$. Die afstand r tussen hulle middelpunte is $3,84 \times 10^{9} \mathrm{~m}$.

7.1 Bereken die gravitasiekrag, F_{AM}, tussen die maan en die aarde wanneer hulle middelpunte ' n afstand r van mekaar is.
7.2 Noem Newton se wet wat jy in VRAAG 7.1 toegepas het.
7.3 Gee'n rede waarom die gravitasiekrag wat die aarde op die maan uitoefen nie konstant bly terwyl die maan om die aarde wentel nie.
$7.4 \quad \mathrm{n}$ Asteroïede met'n massa van $1 / 4 M_{M}$ beweeg op ' n afstand van $2 r$ van die middelpunt van die aarde. Sonder om enige waardes wat voorsien is te gebruik, bepaal die krag tussen die aarde en die asteroïede in terme van $F_{A M}$.

Newton

November 2014/1

1.1 Twee vektore, \mathbf{P} en \mathbf{Q}, werk gelyktydig in op punt \mathbf{O}, soos in die diagram hieronder aangedui. Die grootte van \mathbf{Q} is groter as die grootte van \mathbf{P}.

Watter EEN van die volgende kan die resultant \mathbf{R} van die twee vektore verteenwoordig?

Newton

November 2014/2
1.2 Kragte $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ en \mathbf{S} het almal dieselfde grootte. Die kragte werk in op dieselfde punt in die rigtings soos in die diagram aangetoon.

Watter EEN van die volgende kombinasies toon die vektore wat die grootste grootte vir die x-komponent en die y-komponent het, KORREK aan?

	x-komponent	y-komponent
A	Vektor P	Vektor \mathbf{R}
B	Vektor P	Vektor \mathbf{Q}
C	Vektor \mathbf{R}	Vektor \mathbf{Q}
D	Vektor \mathbf{R}	Vektor \mathbf{S}

1.3 Indien die resulterende (netto) krag wat op 'n voorwerp inwerk nul is, sal die voorwerp ...

A stadiger beweeg.
B uniform versnel.
C sy rigting van beweging verander.
D teen konstante snelheid voortbeweeg.

Newton

November 2014/3
1.4 'n Grafiek van die gravitasiekrag teenoor die massa van 'n voorwerp word hieronder aangetoon.

Watter EEN van die volgende is die KORREKTE voorstelling van die helling van die grafiek?

A Snelheid van die voorwerp
B Gewig van die voorwerp.
C Gravitasieversnelling (g)
D Universele gravitasiekonstante (G)

VRAAG 2 (Begin op ' n nuwe bladsy.)

Die diagram hieronder toon ' n tou-en-katrolstelsel van ' n toestel wat gebruik word om 'n 800 N -voorwerp op te lig. Aanvaar dat die toue lig en onelasties is en ook dat die katrol lig en wrywingloos is.

Bepaal die:
2.1 Grootte van die spannings \mathbf{T}_{1} en $\mathbf{T}_{\mathbf{2}}$
2.2 Grootte en rigting van die reaksiekrag by katrol P

November 2014/4

VRAAG 3 (Begin op 'n nuwe bladsy.)

'n Blok \mathbf{Q} met ' n massa van 70 kg is in rus op ' n tafel. Dit is gekoppel aan blok \mathbf{P} deur middel van twee ligte, onelastiese toutjies wat by \mathbf{S} geknoop is. ' n Derde toutjie is op so ' n manier gerangskik dat die toutjie wat blok \mathbf{Q} verbind horisontaal is, soos in die diagram hieronder aangetoon. Die koëffisiënt van statiese wrywing tussen blok \mathbf{Q} en die oppervlak van die tafel is 0,25 . Die knoop \mathbf{S} is in ewewig.

Die spanning in die toutjie wat blok \mathbf{Q} verbind, is T_{2} en dié vir die toutjie wat teen 35° trek, is T_{1} soos in die diagram aangetoon.
3.1 Definieer die term statiese wrywingskrag in woorde.
3.2 Verduidelik wat bedoel word met die knoop S is in ewewig.
3.3 Teken ' n benoemde vryekragte-diagram om al die kragte wat op die volgende inwerk, te toon:

3.3.1 Die knoop \mathbf{S}

3.3.2 Blok Q

3.4 Bereken die maksimum gewig van blok \mathbf{P} waarvoor blok \mathbf{Q} net sal begin gly.

November 2014/5

VRAAG 4 (Begin op 'n nuwe bladsy.)

' n Blok met ' n massa van 8 kg wat op ' n ruwe horisontale tafel rus, is met ' n ligte onelastiese toutjie wat oor ' n ligte, wrywinglose katrol gaan, aan ' n ander blok met ' n massa van 5 kg verbind. Die 5 kg -blok hang vertikaal soos in die diagram hieronder aangetoon.
'n 15 N -krag word teen ' n hoek van 30° met die horisontaal op die 8 kg -blok toegepas, wat veroorsaak dat die blok na links skuif.

Die kinetiese wrywingskoëffisiënt tussen die 8 kg-blok en die oppervlak van die tafel is 0,25 . Ignoreer die effekte van lugweerstand.
4.1 Teken ' n vryekragte-diagram om AL die kragte wat op die 8 kg -blok inwerk, aan te toon.
4.2 Skryf Newton se tweede bewegingswet in woorde neer.

Bereken die grootte van die:
4.3 Normale krag wat op die 8 kg-blok inwerk
4.4 Spanning in die toutjie wat die twee blokke verbind

VRAAG 5 (Begin op ' n nuwe bladsy.)

5.1 Skryf Newton se universele gravitasiewet in woorde neer.
' n Voorwerp wat 140 N op die oppervlak van die aarde weeg, word verskuif na ' n posisie $6,7 \times 10^{6} \mathrm{~m}$ bo die oppervlak van die aarde.
5.2 Bereken die persentasie waarmee sy gewig sal verander.
2.1

Die resultant van vektore R en P is ..
A 0 N .
B $\quad 4 \mathrm{~N}$ na regs en 2 N af.
C $\quad 2 \mathrm{Nop}$.
D 2 N af.
2.2 Wrywingskrag ...

A is teenoorgesteld in die rigting van beweging van ' n voorwerp en is loodreg op die oppervlak waarmee die voorwerp in kontak is.
$B \quad$ is in dieselfde rigting as die beweging van ' n voorwerp en is parallel aan die oppervlak waarmee die voorwerp in kontak is.
C is in dieselfde rigting as gravitasiekrag.
D werk die beweging van ' n voorwerp teen en is parallel aan die oppervlak waarmee die voorwerp in kontak is.
2.3 ' n Krat word deur twee kragte, elk met 'n grootte \mathbf{F} oor 'n gladde, wrywinglose oppervlak getrek, soos in die diagram aangetoon.

Watter vektordiagram toon die korrekte manier aan waarop die resultante krag \mathbf{R} op die krat bepaal kan word?

VRAAG 3 (Begin op ' n nuwe bladsy.)

3.1 'n Krag van 180 N word op 'n blok teen 55° met die horisontaal toegepas, soos in die skets getoon. Die blok beweeg nie.

3.1.1 KONSTRUEER'n vektordiagram om die x - en y-komponente van die krag te bepaal. (Gebruik'n skaal van $3 \mathrm{~N}: 1 \mathrm{~mm}$)
3.1.2 Gebruik jou antwoord in VRAAG 3.1.1 en bereken die normaalkrag.
3.2 Definieer ' n resultante vektor.
3.3 Twee kragte werk op 'n punt in soos aangedui in die diagram.

3.3.1 BEREKEN die grootte van die resultante krag. 'n Vektordiagram MOET die berekeninge vergesel.
3.3.2 BEREKEN die rigting van die resultante krag kloksgewys vanaf die positiewe y-as.
3.4 Wat word bedoel met'n GESLOTE vektordiagram en watter gevolgtrekking kan uit sogenaamde diagram gemaak word?

VRAAG 4 (Begin op ' n nuwe bladsy.)

'n Slee wat teen $6 \mathrm{~m}^{-1} \mathrm{~s}$ ry, gaan oor' n stuk sneeu soos aangedui in die diagram. Die kinetiese wrywingskoëffisiënt is 6×10^{-2}.

$$
V_{f}=0 \mathrm{~m} \cdot \mathrm{~s}^{-1}
$$

4.2 Bereken:

4.2.1 Die grootte van die versnelling van die slee
4.2.2 Die afstand wat die slee beweeg voor dit stop

Newton

November 2013/4

VRAAG 5 (Begin op ' n nuwe bladsy.)
Douglie en Bulie is besig om ' n motor met ' n massa van 2000 kg op ' n growwe oppervlak met 'n wrywingskrag van 500 N te stoot. Douglie pas'n krag van 400 N na regs toe en Bulie 'n krag van 250 N in dieselfde rigting.

5.1 Teken'n vryliggaamdiagram om die horisontale kragte wat op die motor inwerk aan te toon.
5.2 Bereken die grootte en rigting van die versnelling van die motor.
5.3 Indien die pad'n effense opdraand van 5° maak, bereken die komponent van die motor se gewig parallel aan die opdraand.
5.4 Wat sal die beweging van die motor teen die opdraand wees, indien Douglie en Bulie dieselfde krag as tevore uitoefen? Skryf slegs STILSTAANDE, VERSNEL teen die OPDRAEND OP, VERSNEL teen die OPDRAEND AF, BEWEEG TEEN 'n KONSTANTE SNELHEID teen die opdraand OP OF BEWEEG TEEN 'n KONSTANTE SNELHEID teen die opdraand AF.
5.5 Die "Ry Veilig-veldtog" waarsku altyd passasiers en bestuurders om sitplekgordels te dra om hul veiligheid te verseker tydens ongelukke.

Wat is traagheid?
5.6 Verduidelik, met behulp van toepaslike wette van fisika, hoe ' n veiligheidsgordel werk indien ' n voertuig skielik vertraag in ' n ongeluk.
5.7 ' n Boek rus op ' n tafel soos hieronder getoon.

Skryf Newton se derde wet van beweging in woorde neer.
5.8 Identifiseer al die Newton 3-pare wat OP DIE LESSENAAR inwerk.

Newton
November 2013/5

VRAAG 6 (Begin op ' n nuwe bladsy.)

Beskou die diagram hieronder, wat nie volgens skaal geteken nie.

Bereken:
6.1 Die grootte van die gravitasiekrag tussen die aarde en die son op die posisie soos aangedui in die diagram
6.2 Die versnelling as gevolg van swaartekrag op die bolt as die radius van die maan $1,6 \times 10^{6} \mathrm{~m}$ is
6.3 Die gewig van ' 50 g voorwerp op aarde

Newton

Modelvraestel 2013/1
1.1 Beskou die volgende vektordiagram:

Die vektor wat die resultant van die ander twee voorstel, is ...
$A \quad A B$.
$B \quad A C$.
C CB.
D BA.
1.2 Twee kragte met groottes 11 N en 5 N onderskeidelik, werk gelyktydig op ' n voorwerp in. Watter EEN van die volgende KAN NIE die resultant van die twee kragte wees NIE?

A $\quad 5 \mathrm{~N}$
B $\quad 7 \mathrm{~N}$
C $\quad 9 \mathrm{~N}$
D $\quad 16 \mathrm{~N}$
1.3 ' n Bal word op ' n betonvloer laat val en hop van die vloer af tot dieselfde hoogte van waar dit laat val is. Watter EEN van die volgende wette verduidelik die beste waarom die bal ' n opwaartse krag ondervind?

A Newton se eerste bewegingswet
B Newton se tweede bewegingswet
C Newton se derde bewegingswet
D Newton se universele gravitasiewet

Newton

Modelvraestel 2013/2
1.4 'n Seun staan op ' n skaal in ' n hysbak. Die skaal registreer ' n lesing van 588 N wanneer die hyser stilstaan. Die hysbak begin nou beweeg. Op een oomblik tydens sy beweging registreer die skaal ' n lesing van 600 N .

Watter EEN van die volgende beskryf die beweging van die hysbak op hierdie oomblik KORREK?

Die hysbak...
A versnel opwaarts.
B versnel afwaarts.
C beweeg opwaarts teen konstante snelheid.
D beweeg afwaarts teen konstante snelheid.

Newton

Modelvraestel 2013/3

VRAAG 2 (Begin op 'n nuwe bladsy.)

Kragvektore \mathbf{P} en \mathbf{Q} is volgens skaal geteken op die Cartesiese vlak hieronder getoon.

2.1 Definieer die term resultant van twee kragte in woorde.
2.2 Gebruik ' n berekening om elk van die volgende te bepaal:
2.2.1 \quad Die grootte van vektor \mathbf{P} in krageenhede
2.2.2 Die rigting van vektor \mathbf{Q} kloksgewys vanaf die positiewe y-as gemeet
2.3 Gebruik die komponentmetode om die grootte van die resultant (in krageenhede) van vektore \mathbf{P} en \mathbf{Q} te bereken.
2.4 Bereken die rigting (kloksgewys vanaf die positiewe y-as gemeet) van die resultant van vektore \mathbf{P} en \mathbf{Q}.

Newton

Modelvraestel 2013/4

VRAAG 3 (Begin op 'n nuwe bladsy.)

In 'n eksperiment om die onbekende massa van ' n voorwerp te bepaal, word twee 100 g-massas en 'n voorwerp met 'n onbekende massa, m, vanaf drie toutjies laat hang, soos in die diagram (nie volgens skaal geteken nie) hieronder getoon. Die toutjies is lig en onrekbaar. Twee van die toutjies beweeg oor wrywinglose katrolle.

Wanneer die drie kragte wat op knoop O inwerk, in ewewig is, is die hoeke tussen die twee toutjies en die vertikaal 45° elk, soos in die diagram getoon.

3.1 Definieer die term ewewig soos in hierdie eksperiment gebruik.
3.2 Skryf die belangrikste eksperimentele fout neer wat kan plaasvind tydens die uitvoer van hierdie eksperiment.
3.3 Teken 'n KRAGTEDIAGRAM wat al die kragte wat op knoop O inwerk, toon. Dui die grootte van elke krag op die diagram aan.
3.4 Bepaal, deur middel van AKKURATE KONSTRUKSIE EN METING of
BEREKENING, die onbekende massa m.
Gebruik skaal $10 \mathrm{~mm}: 0,1 \mathrm{~N}$.

Newton

Modelvraestel 2013/5

VRAAG 4 (Begin op ' n nuwe bladsy.)

In die diagram hieronder is 'n 1 kg-massa op ' n ruwe, horisontale oppervlak aan ' n 2 kg-massa verbind met ' n ligte, onrekbare tou wat oor 'n wrywinglose katrol hang. Die kinetiesewrywingskoëffisiënt tussen die 1 kg -massa en die oppervlak is 0,13 .

4.1 Skryf Newton se tweede bewegingswet in woorde neer.
4.2 Bereken die grootte van die:
4.2.1 Kinetiese wrywingskrag wat op die 1 kg-massa inwerk
4.2.2 Versnelling van die 1 kg -massa

Die ruwe, horisontale oppervlak word nou met ' n gladde, wrywinglose oppervlak vervang. Die 2 kg -massa word weer vrygelaat en tref die grond voordat die 1 kg -massa die einde van die horisontale oppervlak bereik.
4.3 Sal die 1 kg-massa teen ' n LAER, ' n HOËR of ' n NUL-versnelling beweeg?

Verduidelik die antwoord kortliks deur na Newton se bewegingswette te verwys.

Newton

Modelvraestel 2013/6

VRAAG 5 (Begin op ' n nuwe bladsy.)

' n Skiër met ' n massa van 60 kg ski uit rus teen ' $\mathrm{n} 15^{\circ}$-helling af. Die lengte van die helling is 75 m . Hy bereik die einde van die helling teen ' n snelheid van $15 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. n Konstante wrywingskrag werk op die skiër in soos hy teen die helling afbeweeg.

5.1 Skryf ' n uitdrukking vir die grootte van die normaalkrag wat op die skiër inwerk neer en bereken dan die grootte daarvan.
5.2 Teken ' n benoemde vryekragte-diagram wat AL die kragte wat op die skiër inwerk soos hy teen die helling afbeweeg, toon.
5.3 Bereken die gemiddelde wrywingskrag wat op die skiër inwerk tydens sy beweging teen die helling af.

VRAAG 6 (Begin op 'n nuwe bladsy.)

Satelliet A met 'n massa van 615 kg wentel om die aarde.
6.1 Skryf Newton se universele gravitasiewet in woorde neer.
6.2 As die aarde ' n krag van 5000 N op satelliet A uitoefen om dit in sy wentelbaan te hou, bereken die hoogte, in kilometer, van die satelliet bokant die oppervlak van die aarde.
6.3 ' n Ander satelliet met ' n massa dubbel dié van satelliet A wentel op ' n afstand twee keer dié van satelliet A vanaf die middelpunt van die aarde. Skryf die grootte van die aantrekkingskrag van die aarde op hierdie satelliet neer.

